skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mohseni, Kamran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Researchers have hypothesized that the post-stall lift benefit of bird’s alular feathers, or alula, stems from the maintenance of an attached leading-edge vortex (LEV) over their thin-profiled, outer hand wing. Here, we investigate the connection between the alula and LEV attachment via flow measurements in a wind tunnel. We show that a model alula, whose wetted area is 1 % that of the wing, stabilizes a recirculatory aft-tilted LEV on a steadily translating unswept wing at post-stall angles of attack. The attached vortex is the result of the alula’s ability to smoothly merge otherwise separate leading- and side-edge vortical flows. We identify two key processes that facilitate this merging: (i) the steering of spanwise vorticity generated at the wing’s leading edge back to the wing plane and (ii) an aft-located wall jet of high-magnitude root-to-tip spanwise flow ( $${>}80\,\%$$ that of the free-stream velocity). The former feature induces LEV roll-up while the latter tilts LEV vorticity aft and evacuates this flow toward the wing tip via an outboard vorticity flux. We identify the alula’s streamwise position (relative to the leading edge of the thin wing) as important for vortex steering and the alula’s cant angle as important for high-magnitude spanwise flow generation. These findings advance our understanding of the likely ways birds leverage LEVs to augment slow flight. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    This paper presents a nonlinear, backstepping depth and pitch controller for a dual-bladder buoyancy engine actuated by gear pumps. Flow-rate feedback is obtained using a custom flow sensor comprised of a differential pressure sensor and a small, 3D-printed attachment. The controller is simulated using a model of the CephaloBot, our in-house developed autonomous underwater vehicle (AUV). Its depth control capability is also experimentally validated using a single-bladder buoyancy engine on-board a smaller-scale test cylinder. Lyapunov stability analysis shows global, asymptotic stability, which is exhibited in our simulation. Our experiments verify that this buoyancy engine is a feasible and effective depth controller for AUVs. 
    more » « less